Vibration-enhanced quantum transport
نویسندگان
چکیده
منابع مشابه
Dissipation Enhanced Asymmetric Transport in Quantum Ratchets
Quantum mechanical motion of a particle in a periodic asymmetric potential is studied theoretically at zero temperature. It is shown based on semiclassical approximation that the tunneling probability from one local minimum to the next becomes asymmetric in the presence of weak oscillating field, even though there is no macroscopic field gradient in average. Dissipation enhances this asymmetry,...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملNonlinearly-enhanced energy transport in many dimensional quantum chaos
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous beh...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2010
ISSN: 1367-2630
DOI: 10.1088/1367-2630/12/8/083033